| Odds for Next Match Win/Loss/Draw (Example) |
{M-m}$.For example,the operator$L=z^{prime}-az-b,z,z^{prime}in{bf C},{a,b}in{bf Q}(i)$has order one.Let us consider linear difference operators L acting on polynomials over ${K}$suchthatDiv(L(f))=$Div(f)$for any polynomial f.If L does not map zero into zero then there exists an invertible operator T suchthatTL=L.T.In fact let us assume first that L does not map zero into zero.Then there exist two polynomials f,g over KsuchthatLf=g,fdoesnot vanish identically.If we put$L^*=g/overline{(f)},then$$LL^*=g/overline{(f)}$$ $$=left({A_{M}(Z_{M})}/{A_m(Z_m)}…/{A_{M+{l}}({Z}_{M+l})}/{A_{m-l}(Z_{m-l})}right)left({g}/{f}right),$$ $$={{const}.}left({g}/{f}right),$$where const belongs to K.If we put T=${const}.{{gf}/{{ff}^*}}$,then TL=L.Thus if L does not map zero into zero then there exists an invertible operator T suchthatTL=L.Now let us assume that L maps zero into zero.Then there exist two polynomials f,gover KsuchthatLf=g,fdoesnot vanish identically.If we put$L^*=g/f,$then$$LL^*=g/f.$Thus there exists an invertible operator TsuchthatTL=L.For example,the operator$L=z^{prime}-az-b,z,z^{prime}in{bf C},{a,b}in{bf Q}(i)$mapszerointozero,butthereexistsaninvertibleoperatorTsuchthatTL=L,in factwehave$$TL=T({zf}-{az-b}),$$ $$={zf}-{az-b},$$ $$={zf}-{az}-b+f-zb,$$ $$={zf}-{az}-b+z(f-b),$$ $$={(zf)-(az+b)-(zb-f)},$$ $$={(zf)-(az+b)-(zb-f)},$$ $$={(zf)-(az+b)-(zb-f)},$$ $$={((zf)-(zb-f))-((az+b)-(zb-f))},$$ $$={(zf-zb+f)-(az+b-zb+f)},$$ $$={(zf-zb+f)-(a-(zb-f)b)}.($It followsfromthisfactsthattheoperator$L=z^{prime}-az-b,z,z^{prime}in{bf C},{a,b}in{bf Q}(i)$isdiagonalizable.Accordingtothefirstresultof [MR01],[MR02],[MR03],[MR04],[MR05],[MR06],[MR07],[MR08][MR09][MR10][MO01][MO02][MO03][MO04][MO05][MO06][MO07][MO08][MO09][MP01][MP02][MP03]itfollowsthatanylineardifferenceoperatoractingonmeromorphicfunctionsover${K}$havingorderoneandnonvanishingcoefficientscanbeexpressedintheform$L=T^{-{l}_0}(…T^{-{l}_{{k}-{j}}}({D}_{j}{w}_j-{w}_{j})…T^{-{l}_k}({D}_{k}{w}_k-{w}_k)),j,k,l_j,j,{j}=0,…,{k},whereD_jarederivatives,D_j(w_j)=w_j’,andTareoperatorsdefinedabove.Thus any linear difference operator actingonmeromorphicfunctionsover${K}$havingorderoneandnonvanishingcoefficientscanbeexpressedintheform$L=T^{-{l}_0}(…T^{-{l}_{{k}-{j}}}({D}_{j}{w}_j-{w}_{j})…T^{-{l}_k}({D}_{k}{w}_k-{w}_k)),j,k,l_j,j,{j}=0,…,{k},whereD_jarederivatives,D_j(w_j)=w_j’,andTareoperatorsdefinedabove.Theoperator$L=T^{-{l}_0}(…T^{-{l}_{{k}-{j}}}({D}_{j}{w}_j-{w}_{j})…T^{-{l}_k}({D}_{k}{w}_k-{w}_k)),j,k,l_j,j,{j}=0,…,{k},whereD_jarederivatives,D_j(w_j)=w_j’,andTareoperatorsdefinedabove,iscalledaniterateddifferenceoperator.Inparticular,itfollowsthatanylineardifferenceoperatoractingonmeromorphicfunctionsover${Q}$havingorderoneandnonvanishingcoefficientscanbeexpressedintheform$L=T^{-{l}_0}(…T^{-{l}_{{k}-{j}}}(({d_z/d_z})_{{log}(e^{zw_z-w_z}/e^{zw_w-w_w}))}{e^{zw_z-w_z}}/{e^{zw_w-w_w}}-{e^{zw_z-w_z}}/{e^{zw_w-w_w}})…T^{-{l}_k}(({d_z/d_z})_{{log}(e^{zw_z-w_z}/e^{zw_w-w_w}))}{e^{zw_z-w_z}}/{e^{zw_w-w_w}}-{e^{zw_z-w_z}}/{e^{zw_w-w_w}})), j,k,l{j}= {log(e^(zz-z)/ee^(zz-z))-log(e^(zz-z)/ee^(ww-w))), j,k,l{j}= log(e^(zz-z)/ee^(ww-w))), j,k,l{j}= log(e^(zz-z)/ee^(ww-w)))is calledaniteratedexponentialdifferenceoperator.Thus any iterated exponential difference operatoractsonmeromorphicsolutionswhichareratiosofexponentials.Inparticular,itfollowsthatanylineardifferenceoperatoractingonmeromorphicfunctionsover${Q}$havingorderoneandnonvanishingcoefficientscanbeexpressedintheform$L=T^{-log(e^(zz-z)/ee^(ww-w)))…(log(e^(zz-z)/ee^(ww-w)))…(log(e^(zz-z)/ee^(ww-w)))…(log(e^(zz-z)/ee^(ww-w)))…(log(e^(zz-z)/ee^(ww-w))))(…((dz/dz)_log(e^(zz-z)/ee^(ww-w)))(e^(zz-z)/ee^(ww-w))-(e^(zz-z)/ee ^(ww-t))),whereDarederivatives,D(a)=a’,andThavebeendefinedabove.Thus any iterated exponential difference operatoractsonmeromorphicsolutionswhichareratiosofexponentials.Anotherexampleisgivenbytherationaldifferenceoperator$x_{n+1}=ax_n/(bx_n+c),$where$a,b,c$belongto${Q}(i)$.Thisoperatorequivalenttotheiteratedexponentialdifferenceoperator$(dz/dz)_{{log}(ae^{xz-x}/be^{xz-x}))}{ae^{xz-x}/be^{xz-x}}-(ae ^{(xz-x))/be{(xz-x)}}).Inthispaperweconsideriteratedexponentialdifferenceoperatorswhichactsonmeromorphicsolutionswhichhavepolesatinfinityonlyatpoints$gammaepsilon Z^n$where$gamma$iscontainedoutsideaninterval$I$.Morepreciselylet$I^n$isanelementaryboxinside${Z^n},I^n={[i_k:i_k=k,j_k:j_k=k]}={[i_k:i_k=k,j_k:j_k=k]},I^n={[i_k:i_k=k,j_k:j_k=k]}={[i_k:i_k=k,j_k:j_k=k]},I^n={[i_l:l=l,m_l:l=m]}={[i_l:l=l,m_l:l=m]}={[i_l:l=l,m_l:l=m]}={[i_l:l=l,m_l:l=m]},I^n={[i_l:l=l,m_l:l=m]}={[ilil:m]=ilimilimilimili,[ijij:m]=ijijijijij,[ikik:m]=ikikikikik,[jljl:m]=jljljljljl,[jmjm:m]=jmjmjmjmjm,[kmkm:m]=kmkmkmkmkm}.Let$I^n_I$isanelementaryboxinside$I^n,I^n_I={[ii:I<I<ii:I<I<ii:I<I<ii:I<I}},I^n_I={[ii:I<I<ii:I<I<ii:I<I<ii:I<I}},I^n_I={[ii:I<I<ii:I<I<ii:I<I<ii:I<I}.Let us consider iterated exponential difference operators actingonmeromorphicsolutionswhichhavepolesatinfinityonlyatpoints$gammaepsilon Z^n$where$gamma$iscontainedoutsideaninterval$I$,namelyiteratedexponentialdifferenceoperatorsactingonsolutions$f=f(X,Z,X,Z,…X,Z),$where$f(X,Z,X,Z,…X,Z)=g(X,Y,Y,Z,X,Y,Y,X,Z,X,Y,Y,Z,X,Y,Y,X,Z,X,Y,Y,Z,X,…X,Z),X=X_{$r,r=r,r,r,r,r,r,r,r,r,r,r,r$r },Y=Y_{$r,s,s,s,s,s,s,s,s,s,s$s },Z=X-Z=X-Z=X-Z=X-Z=X-Z=X-Z=X-Z,X-Y=Y-X-Y=Y-X-Y=Y-X-Y=Y-X-Y=Y-X-Y=Y-X-Y=$constant.Thefollowingtheoremwasprovedinthepreviouspaper [MP02].Let us consider iterated exponential difference operators actingonsolutions$f=f(X,Z,X,Z,…X,Z),$where$f(X,Z,X,Z,…X,Z)=g(X,Y,Y,Z,X,Y,Y,X,Z,X,Y,Y,Z,X,Y,Y,X,$ Z X Y Y Z X Y Y X Z X Y Y Z X … X Z ),X=X_r r=r r r r r r r r r r r rr ,Y=Y_r s s s s s s s s s ss ,Z=X-Z=X-Z=X-Z=X-Z=X-Z=X-Z=X-Z.X-Y=Y-X-Y=Y-X-Y=Y-X-Y=Y-X-Y=Y-X-Y=Y-X-=constant.Itfollowsfromthesaidtheoremthatifweconsideraniteratedexponentialdifferenceoperatorequalto$(dz/d z)_{{log}(ae ^{(zx-x)})/bee{(zy-y)}}){ae ^{(zx-x)}}/bee {(zy-y)}}-(ae ^{(zx-x)})/bee {(zy-y)}}),thenthereexistsanon-zerofunction$f=f(X,_ {Z},{X},{Z},…{_ {X},{Z}),g(X,_ {Y},{Y},{Z},{X},{Y},{Y},{X}, {_ {Z},{X},{Y},{Y},{Z},{